

DE L'EDUCATION NATIONALE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE ET DE L'INNOVATION

Epreuve Pratique en Mathématiques

Classes de quatrième

- Année 2018/2019 -

SCRATCH

SUJET S1

Etape 1.

Assemble correctement les blocs ci-contre pour permettre au lutin de tracer un carré dont les côtés ont une longueur égale à 100 pixels :

Appeler le professeur pour validation :

Etape 2.

Crée un programme qui trace un triangle équilatéral dont les côtés ont une longueur égale à 100 pixels.

Appeler le professeur pour validation :

Etape 3.

Modifie ton programme de manière à ce que ce soit l'utilisateur qui choisisse la longueur du triangle équilatéral qu'il veut créer.

Appeler le professeur pour validation :

Etape 4.

Créer un programme de manière à ce qu'il affiche la figure ci-dessous. Le triangle équilatéral le plus petit possède des côtés dont la longueur est égale à 20 pixels.

SCRATCH

SUJET S2

Etape 1.

Le script ci-dessous doit permettre de construire un carré de côté de longueur 100. Complète puis exécute sous scratch le script fourni.

Appeler le professeur pour validation :

Etape 2.

Complète le script donné pour qu'il réalise la figure ci-contre.

Le triangle est équilatéral.

Appeler le professeur pour validation :

Etape 3.

Modifie ton programme de manière à ce que ce soit l'utilisateur qui choisisse la longueur du côté du carré et du triangle équilatéral qu'il veut créer.

Appeler le professeur pour validation :

Etape 4.

Modifie ton programme de manière à ce que l'utilisateur puisse choisir s'il veut construire un carré ou un triangle équilatéral. Tu pourras utiliser les blocs ci-dessous.

Etape 2.

Complète ton programme de manière à ce que ton lutin lance deux dés à 6 faces et qu'il annonce le résultat de chaque dé.

An	neler	le	nro	fesseur	nour	validation	
ΠPI	JEIEI	IC.	piu	JESSEUI	pour	vanuation	

Etape 3.

Complète et modifie ton programme de manière à ce que ton lutin lance deux dés à 6 faces et qu'il annonce « la somme des deux dés est ... ».

Appeler le professeur pour validation :

Etape 4.

Complète et modifie ton programme de manière à ce que ton lutin annonce :

- si la somme des deux dés est strictement plus grande que 7 : « tu as gagné ! » ;
 - si la somme est inférieure ou égale à 7 : « tu as perdu ! ».

Appeler le professeur pour validation :

_

GEOGEBRA

SUJET G1

L'unité est le centimètre (cm).

ABCD est un rectangle de longueur AB = 8 et de largeur AD = 5.

E est un point de [BC] tel que CE =2.

F est un point de [AB].

On cherche à déterminer quelle position doit avoir F sur [AB] pour que le triangle EDF soit rectangle en F.

Etape 1.

A l'aide d'un logiciel de géométrie dynamique, construire le rectangles ABCD.

Appeler le professeur pour validation :

Etape 2.

F est un point libre de [AB] : F doit pouvoir être déplacé sur [AB]. Construis le triangle EDF.

Appeler le professeur pour validation :

Etape 3.

Affiche la longueur AF et une mesure de l'angle \widehat{EFD} .

Appeler le professeur pour validation :

Etape 4.

Déplace le point F sur le segment [AB] afin que le triangle EDF soit rectangle en F.

Existe-t-il une seule solution ?

GEOGEBRA

SUJET G2

Un constructeur de voile doit créer une grande voile triangulaire contenant un rectangle pour mettre le logo du sponsor LOGO.

La voile a la forme d'une triangle ABC rectangle en B et tel que :

AB = 12 dm et BC = 16 dm.

D est un point du segment [BA] et DEFG est un rectangle.

Le sponsor souhaite que le rectangle destiné au logo ait l'aire la plus grande possible.

Etape 1 :

A l'aide d'un logiciel de géométrie dynamique, construit le triangle ABC

Appeler le professeur pour validation :

Etape 2 :

D est un point libre de [BA], il doit pouvoir être déplacé sur (BA]. Construis la droite parallèle à (AC) passant par D, puis construis le point E intersection de cette droite avec [BC]. Achève la construction du rectangle DEFG.

Appeler le professeur pour validation :

Etape 3 :

Affiche la longueur BD et l'aire du rectangle EDFG.

Appeler le professeur pour validation :

Etape 4 :

Déplace le point D sur le segment [BA]. Pour quelle valeur de BD, l'aire du rectangle est-elle maximale ?

BD =

GEOGEBRA

SUJET G3

L'objectif de cette activité est de réaliser la frise ci-dessous.

Etape 1.

A l'aide d'un logiciel de géométrie dynamique, construis le triangle ABC isocèle en A tel que : AB=AC=3 et BC=2.

Appeler le professeur pour validation :

Etape 2.

A l'aide d'une rotation de centre B et d'angle de mesure 90° dans le sens horaire, construis le triangle BEF.

Appeler le professeur pour validation :

Etape 3.

A l'aide d'une ou des transformation(s) que tu jugeras utile(s), construis le motif de base ci-contre.

Appeler le professeur pour validation :

Etape 4.

A l'aide d'une ou des transformation(s) que tu jugeras utile(s), réalise, à partir du motif de base, la frise demandée.

TABLEUR

SUJET T1

On considère le programme de calcul n° 1 suivant :

Programme 1 :

- Choisir un nombre
- Ajouter 3 à ce nombre
- Multiplier le résultat par 5
- Enlever 4

Etape 1.

<u>A l'aide d'un tableur, fais fonctionner ce programme pour les nombres de départ suivants : 2 ; 3,5 et -4.</u>

Nombre de départ	Nombre obtenu
2	
3,5	
-4	

Appeler le professeur pour validation :

Etape 2.

On considère maintenant le programme de calcul n° 2 suivant :

1	A	В	С
1	nombre de départ	Programme 1	Programme 2
2	0	11	-2
3	1		
4	2		
5	3		
6	4		
7	5		
8	6		

Programme 2 :

- Choisir un nombre
- Le multiplier par 4
- Enlever 1
- Prendre le double du résultat obtenu
- Ajouter le nombre de départ

A l'aide d'un tableur fais fonctionner les deux programmes de calcul pour tous les entiers compris entre 0 et 10, comme indiqué ci-dessous.

Existe-t-il un nombre entier compris entre 0 et 10 qui donne le même résultat avec les programmes 1 et 2 ?

.....

Appeler le professeur pour validation :

Etape 3.

A partir du tableau obtenu, construis un graphique qui représente les résultats obtenus avec les programmes 1 et 2 pour des nombres de départs entiers compris entre 0 et 10. (TYPE DE GRAPHIQUE : XY(dispersion)-Lignes seules)

Existe-t-il un nombre compris entre 0 et 10 qui donne le même résultat avec les programmes 1 et 2 ?

.....

Appeler le professeur pour validation :

Etape 4.

A l'aide du tableur détermine, <u>avec le plus de précision possible</u>, le nombre compris entre 0 et 10 qui donne le même résultat avec les programmes 1 et 2.

TABLEUR

SUJET T2

On considère la figure ci-contre qui n'est pas réalisée en vraie grandeur.

ABC est un triangle isocèle en A tel que : AB = 15 cm et CI = 5 cm.

I est le milieu de [AB]. E est un point de [AB].

DEFG est un rectangle.

On veut déterminer la position de E sur pour que l'aire du rectangle DEFG soit la plus grande possible.

x =

On note : AE = x

On donne : Aire _{DEFG} = $\frac{2}{3}x(15-2x)$

Etape 1.

A l'aide d'un tableur calcule l'aire du rectangle DEFG pour x entier compris entre 0 et 10, comme indiqué ci-contre.

	A	B	
1	x	aire DEFG	
2	0	0	
3	1		
4	2		
5	3		
6	4		
7	5		
0	ß		

Appeler le professeur pour validation :

Etape 2.

A l'aide des résultats obtenus avec le tableur, réponds aux questions suivantes :

a. Quelles valeurs de l'aire données par le tableur sont impossibles ? Explique pourquoi

.....

b. Pour quelle valeur de x l'aire du rectangle est-elle maximale et quelle est cette aire, arron<u>die au</u>

Aire max \approx

Etape 3.

dixième?

Construis un graphique qui représente l'aire du rectangle EDFG en fonction de x. (TYPE DE GRAPHIQUE : XY(dispersion)-Lignes seules-Lignes lisses)

La réponse donnée à la question b. semble-t-elle toujours exacte ?

Appeler le professeur pour validation :

Appeler le professeur pour validation :

Etape 4.

A l'aide du tableur détermine, <u>avec le plus de précision possible</u>, la valeur de *x* pour laquelle l'aire est maximale.

TABLEUR

SUJET T3

Une mini-fusée est lancée vers le haut, à partir du sommet d'une falaise, en bord de mer, et elle tombe dans l'eau après environ 7 secondes.

La formule suivante donne l'altitude H à laquelle la mini-fusée se trouve après *t* secondes :

t désigne le temps en seconde.

H désigne l'altitude en mètre (altitude 0 : niveau de la mer).

Etape	1.
-------	----

A l'aide d'un tableur calcule l'altitude de la mini-fusée pour *t* entier compris entre 0 et 7 s, comme indiqué ci-contre.

Appeler le professeur pour validation :

	1	A	B	
	1	t en s	altitude H en m	
	2	0	20	
>	3	1		
	4	2		
	5	3		
	6	4		
	7	5		
	8	6		
	9	7		

Etape 2.

A l'aide des résultats obtenus avec le tableur, réponds aux questions suivantes :

- c. Quelle est la hauteur de la falaise ?
- **d.** A *t* = 7 s, la mini-fusée est-elle retombée dans la mer ?
- e. A quel instant *t* la mini-fusée atteint-elle sa hauteur maximale et quelle est cette hauteur ?

t= *H max* =

Appeler le professeur pour validation :

Etape 3.

Construis un graphique qui représente l'altitude *H* en fonction du temps *t*. (TYPE DE GRAPHIQUE : XY(dispersion)-Lignes seules-Lignes lisses)

La réponse donnée à la question c. semble-t-elle toujours exacte ?

Appeler le professeur pour validation :

Etape 4.

A l'aide du tableur détermine, <u>avec le plus de précision possible</u>, l'instant t auquel l'altitude maximale est atteinte.

